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Abstract. A three-dimensional (3D) spin-glass model diluted with lattice gas variables is
investigated and compared with glass-forming liquids. The spin variables which play the role
of internal degrees of freedom exhibit strong fluctuations. While a critical length associated
to these fluctuations diverges at the glass transition, where the diffusion coefficient is found to
vanish, the density fluctuations do not show any critical behaviour.

Recently there has been renewed interest in the study of glass-forming liquids [1, 2] and
spin glasses [3, 4]. Both systems are characterized by an infinitely large relaxation time
as the glass transition is approached, and exhibit a complex dynamical behaviour at low
temperature (and also high density in the case of liquids) typically well above the glass
transition. However, there are some basic differences. The spin-glass (SG) transition
is characterized by a diverging length, associated with the spin pair correlation function
and consequently exhibits a strong divergence in nonlinear susceptibility. In glass forming
liquids there is no apparent diverging length and no critical density fluctuations and therefore
no divergence in the compressibility. Nevertheless the theory of Adam and Gibbs [5] gives
an intuitive physical explanation of the glass transition by assuming a diverging cooperative
length, although the precise definition of such a length has always been lacking. Whether
or not there exists a diverging length associated to the glass transition still remains an open
problem.

In order to answer some of these questions and find a relation between spin glasses and
glass forming liquids we introduce here a frustrated spin lattice gas model, with the spin
playing the role of internal degrees of freedom, to describe the behaviour of a glass forming
liquid.

In spin-glasses, frustration originates from the presence ofquencheddisorder in the
distribution of spin interactions which cannot all be satisfied simultaneously [3, 4]. The
origin of frustration in glass-forming liquids is generally different: when they have no
underlying crystalline order, frustration is typically generated by the geometrical shape of the
molecules which prevents the formation of close-packed configurations at low temperature
or high density; for systems with underlying crystalline order, frustration arises when the
local arrangement of molecules kinetically prevents all the molecules from reaching the
crystalline state. So ‘frustration’ in glass-forming liquidsevolves in time, but at a low
enough temperature, or high enough density, the dynamics is so slow as to allow us to treat
the variables from which frustration originates as quenched.

The model we introduce is a SG model diluted with lattice gas variables:

βH = −J
∑
〈ij〉
(εij SiSj − 1)ninj − µ

∑
i

ni . (1)
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Here the occupancy variablesni = 0, 1 have an internal degree of freedomSi ± 1, the
εij = ±1 are quenched random interactions andµ is the chemical potential.

This model reproduces the±J Ising spin glass in the limitµ→ ∞, because all sites
are occupied (ni = 1). We will consider here the other limitJ → ∞. In this case
the model describes a frustrated lattice gas with properties recalling those of a ‘frustrated’
liquid. In fact the first term of Hamiltonian (1) implies that two nearest-neighbour sites
can be occupied only if their spin variables satisfy the interaction, i.e. ifεijSiSj = 1, else
they feel an infinite repulsion(J = ∞). Therefore, the particles must either move apart
or change the relative orientation of the spins. Since in a frustrated loop the spins cannot
satisfy all the interactions, in this model particle configurations in which a frustrated loop
is fully occupied are not allowed (a frustrated loop is a closed polygon where the product
of all the signsεij is −1 [3, 4]).

To make the connection with a liquid we note that the internal degree of freedomSi
may represent for example internal orientation of a particle with non-symmetric shape. Two
particles can be nearest neighbours only if the relative orientation is appropriate, otherwise
they have to move apart [6]. The frustrated loops in the model are the same as for the
SG model and correspond in the liquid to those loops which, due to geometrical hindrance,
cannot be fully occupied by the particles. A connection between frustrated loops in spin
glasses and defect lines in ordinary glasses has been discussed by Rivier [7].

In the limit J →∞, the partition function of model Hamiltonian (1) can be written as

Z =
∑
C

eµn(C)2Nc (2)

where the sum is over all particle configurations which do not contain a frustrated loop,
n(C) is the number of particles andNc(C) is the number of clusters of nearest-neighbours
particles in the configurationC. Apart from the factor 2Nc(C), the partition function (2)
coincides with the site frustrated percolation which has been introduced to model glass-
forming liquids [8, 9].

The difference between the site frustrated percolation model and the frustrated spin
lattice gas model considered here is that in this case we can also study quantities related to the
internal degrees of freedom. This is physically more satisfactory and also computationally
simpler than the case where the spin variables do not appear.

In analogy with results on site and bond percolation [8] we expect for the Hamiltonian
model (1) (for J → ∞) that in the high-density region there is a SG transition atµg,
in the same universality class as the Ising SG transition, namely the correlation length
associated to the spin pair correlation function diverges with a critical exponentν identical
to the exponent of the Ising SG model. We also expect well before the glass transition,
at µp < µg, a percolation transition associated to a percolating cluster of particles in the
same universality class of random percolation. This percolation transition corresponds in
the Ising SG model to the percolation of the Kasteleyn–Fortuin Coniglio–Klein clusters
and it has been suggested that this percolation transition may be accompanied by stretched
exponential relaxation, or other anomalies preceding the glass transition. This transition
should not be confused with the dynamical transition found in mean-field calculations for
some SG models.

In what follows we present the results from Monte Carlo (MC) simulations in 3D of
the Hamiltonian model (1) (forJ →∞) for static and dynamic behaviour.

We find that the particle diffusion coefficient vanishes at a dynamical critical point
numerically consistent with the static SG critical pointµg. We have also located the
percolation transitionµp and found that it signals the onset of stretched exponentials in
the long-time behaviour of time correlation functions.
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The model shows, moreover, that in spite of the smooth behaviour of the compressibility
and specific heat, fluctuations associated to the ‘internal degree of freedom’ become critical
at the glass transition. While in spin glasses this diverging length can be detected by
measuring the nonlinear susceptibility, in glass-forming liquids the internal degrees of
freedom are not easily probed in experiments and this length is not usually seen, unless
probes, which couple to the internal degrees of freedom, are used. In fact there are some
experiments where a critical length associated to orientational correlations has been detected
[10], and recently evidence for a divergent dielectric susceptibility at the glass transition
has been reported [12].

The picture which emerges from this model is that for low density the behaviour is the
same as that of a normal fluid, with simple exponential relaxation. As the density increases
a percolation threshold is reached above which the dynamics starts to deviate from simple
exponential relaxation. In an intermediate region betweenµp andµg we find that strong
‘non-equilibrium’ phenomena set in, as a precursor to the true glass transition. In this
region we observe that the particle mean-square displacement shows apparent anomalies.
Moreover, in this region, the long-time asymptote of the density correlation functions, the
Debye–Waller factors, become different from zero on our observation time scales and system
sizes.

Most of the data presented below concern a system on a cubic lattice (analogous results
are found in two dimensions) of linear sizeL = 8, 16 with periodic boundary conditions,
fixing J = 10 and varyingµ (i.e. the density). The data do not change forJ = 10 000,
showing that we are in the limit ofJ = ∞. We used a standard MCdynamic, in which
particle diffusion and spin are updated according to a spin-flip Metropolis algorithm. Our
MC simulations were performed after successive thermalization of the systems at higher
and higherµ for about 2× 104 MC sweeps at each value of external parameters, and then
by obtaining measurements for about 2× 107 MC sweeps, for a given configuration of
εij . We have adopted the usual MC techniques (see [4]) to extract our results concerning
thermodynamic properties, and our results are well established up to the deep glassy region
(µ ∼ 5.0) above which they may only be indicative (due to extremely long CPU times).

The properties related to thespin variablesare the same as found in standard spin
glasses. We have located the glass transition by studying Binder’s cumulant. The quantities

gQ = 1

2

(
3− 〈Q

4〉
〈Q2〉

)
with

Q =
〈

1

N

∑
i

sai n
a
i s
b
i n

b
i

〉
(a and b are two replicas, i.e. two systems of same size, interactions configuration and
Hamiltonian parameters, which evolve in parallel with different number generators, andN

is the total number of particles), for different sizesL = 8, 16, show an intersection zone
in the regionµg > 5.5 (corresponding to a densityρg > 0.67). Slightly belowµg, the SG
susceptivityχSG= N(〈Q2〉 − 〈Q〉2) seems to diverge as shown in figure 1 (forL = 8). As
in standard spin glasses the linear susceptivity and the specific heat do not present apparent
anomalies in the glass transition region and the same happens to‘density’ variables. The
densityρ = 〈(1/L3)

∑
i ni〉, with increasingµ, approaches a plateau limited by the value

ρ ∼ 0.69 (see figure 3, later). The compressibilityK = L3(〈ρ2〉 − 〈ρ〉2), which is in strict
correspondence with the specific heatCs, is smooth at the SG transition (see figure 1).
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Figure 1. CompressibilityK as a function ofµ in a 3D system of sizeL = 8 at J = 10. The
inset depicts the SG susceptibilityχSG for the same system. WhileχSG presents a well defined
peak,K is a smooth function ofµ.

It is possible to define percolation clusters of particles in our model following Kasteleyn–
Fortuin and Coniglio–Klein [13], with a bond probability given by [14]

pKF = (1− e−2Jninj )δεij SiSj ,1.

These clusters in our context describe the physics of unfrustrated sets of sites in the systems,
and in theJ →∞ limit are simply the groups of neighbouring particles. They percolate at
µp = 0.75, a value obtained by finite-size scaling with data from sizesL = 8, 16. Thisµp

corresponds to a densityρp = 0.38, which is a little higher than the value of the standard 3D
random percolation,ρrp = 0.31. This percolation transition is in the 3Drandom percolation
universality class.

The dramatic effect of frustration on particle motion can be figured considering the
particles which diffuse, exchanging their positions with a nearest-neighbour hole, in such a
way that no unsatisfied spin interactions are introduced. At low particle densities, motion is
not inhibited by quenched frustration because of the abundance of holes. However, at high
densities, a given particle can diffuse through the system only by a large-scale, cooperative
rearrangement of many particles.

This effect becomes apparent by studying quantities strictly related to the atomic motion
of sites (in this section we present data for a system withL = 16, and analogous results
are found forL = 8). The particles mean-square displacement,

R2(t) =
〈

1

N

∑
i

(ri(t)− ri(0))2
〉
,

shows deviation from simple Brownian linear time dependence and exhibits at intermediate
times with an inflection region, which becomes evident in a region aboveµp and increases
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Figure 2. Mean-square displacementR(t)2 in a 3D system of sizeL = 16 at J = 10 for
ρ = 0.271, 0.440, 0.581, 0.674 (higher curves correspond to lower densities).

approachingµg (see figure 2). The long-time asymptotic linear time behaviour ofR2(t)

defines the diffusivityD, which shows an apparent shoulder at aboutµ∗ ∼ 2 (ρ∗ ∼ 0.5) as
shown in figure 3. Below this value, it is possible to fitD(µ) with a power law

D(µ) = A0 (µ0− µ)γ (3)

with A0 = 1.2×105, µ0 = 5.3 andγ = 7.0, and above this value with a Voghel–Tamman–
Fulcher law

D−1(µ) = A1 exp(B/(µ−1− µ−1
1 )) (4)

with A1 = 17, µ1 = 11.4 andB = 0.3. An Arrhenius fit works too. The valueµ0 from
the power-law fit corresponds to the characteristic temperatureTc of mode coupling theory,
or to the ‘dynamic transition’ of mean-field theory ofp-spin glasses. A crossover from
power law to Arrhenius (or Voghel–Tamman–Fulcher) behaviour is also observed in real
experiments [1, 2].

We have studied other time-dependent quantities in the system [15], such as the Fourier
transform density–density and square magnetization autocorrelation functions:

Ck(t) = 〈ρk(t)ρ−k(0)〉/〈ρkρ−k〉 and Cm(t) = 〈m2(t)m2(0)〉/〈m4〉
(hereρk is the Fourier transform of density andm the magnetization). They show a distinct
two time decay aboveµp and have a definite long-time plateau value higher than zero in
the region aboveµg (see figure 4). The shorter of these two times,τexp, is linked to the
short-time exponential decay (time is measured in such a way that a single lattice update
corresponds to unity). The longer time is associated to a stretched exponential decay on
the long-time scaleC(t) = A exp(−(t/τ )β) [16], with an exponentβ which becomes less
than 1 just aroundµp, approaching a valueβ(µg) ∼ 0.2 at the glass transition. The time
τ , so defined, has a behaviour analogous toD−1 with a less apparent change atµ∗.
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Figure 3. Inverse of diffusivityD(µ) as a function ofµ in a 3D system of sizeL = 16, at
J = 10. Superimposed lines are the power-law (broken curve) and Voghel–Tamman–Fulcher
(full curve) fits quoted in the text. The inset reports the densityρ as a function ofµ. The full
line is a Fermi–Dirac fit:ρ(µ) = ρ∞/[1+ exp(−(µ−µ0)/1µ0)], with ρ∞ = 0.69,µ0 = 0.66
and1µ0 = 1.4.

Figure 4. The Fourier transformed density time correlation function,Ck(t), for an intermediate
value of k, as a function of timet for several values of the chemical potentialµ (µ =
−2.0, 3.0, 4.0, 6.0), in a 3D system of sizeL = 16, atJ = 10.
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In this paper we have studied the properties of a 3D frustrated lattice gas. This model,
which bridges spin glasses and site frustrated percolation, exhibits a dynamical behaviour
similar to that found in glass-forming systems.

This model, similar to frustrated percolation, exhibits a percolation transition atµp,
before the glass transitionµg, where unfrustrated clusters of neighbouring sites begin to
feel non-local effects of frustration. This transition corresponds to a crossover from normal
behaviour to anomalous behaviour where precursors of the glass transition set in.

This may also suggest that in glass-forming liquids there may be a relevant temperature
well above the glass transition corresponding to a crossover from normal to anomalous
behaviour which may be responsible for various precursor phenomena, such as the onset of
stretched exponentials, the breakdown of the Stokes–Einstein relation [15] and the presence
of temporal heterogeneity [11]. A percolation transition well before the glass transition has
recently been discovered by Tomida and Egami [17] in a molecular-dynamics simulation
of monoatomic liquids. It is also interesting to note that Kivelson [18] showed that the
viscosity of 15 glass-forming liquids could be collapsed on one single curve, by assuming
only one characteristic temperature well above the glass transition.

In this model, as in frustrated percolation, we observe atµg the divergence of a
cooperative lengthξ , as suggested in the original theory of Adam and Gibbs [5]. This point,
which seems to be located where the particle macroscopic diffusion motion is arrested, does
not show any divergence in the density fluctuations.

We have observed that, at an intermediate region betweenµp andµg (aroundµ∗), the
diffusivity constant changes its behaviour withµ. This region corresponds to the non-
equilibrium ‘freezing temperature’ found in spin glasses [4] or the manifestation in finite-
dimensional systems of the mean-field ‘dynamical transition’ known in the SG literature [19].
In this region, where the diffusivityD(ρ) shows an apparent discontinuity in its derivative,
many features commonly observed in experiments on glass-forming liquids appear [1, 2].

We acknowledge CINECA for supporting part of the Monte Carlo calculation. This work
has been partially supported by CNR.
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